PyODDS is an end-to end Python system for outlier detection with database support. PyODDS provides outlier detection algorithms which meet the demands for users in different fields, w/wo data science or machine learning background. PyODDS gives the ability to execute machine learning algorithms in-database without moving data out of the database server or over the network. It also provides access to a wide range of outlier detection algorithms, including statistical analysis and more recent deep learning based approaches. It is developed by DATA Lab at Texas A&M University.

PyODDS is featured for:

  • Full Stack Service which supports operations and maintenances from light-weight SQL based database to back-end machine learning algorithms and makes the throughput speed faster;

  • State-of-the-art Anomaly Detection Approaches including Statistical/Machine Learning/Deep Learning models with unified APIs and detailed documentation;

  • Powerful Data Analysis Mechanism which supports both static and time-series data analysis with flexible time-slice(sliding-window) segmentation.

API Demo

from utils.import_algorithm import algorithm_selection
from utils.utilities import output_performance,connect_server,query_data

# connect to the database
conn,cursor=connect_server(host, user, password)

# query data from specific time range
data = query_data(database_name,table_name,start_time,end_time)

# train the anomaly detection algorithm
clf = algorithm_selection(algorithm_name)

# get outlier result and scores
prediction_result = clf.predict(X_test)
outlierness_score = clf.decision_function(test)

# visualize the prediction_result

Quick Start

python --ground_truth --visualize_distribution

Results are shown as

connect to TDengine success
Load dataset and table
Loading cost: 0.151061 seconds
Load data successful
Start processing:
100%|***************| 10/10 [00:00<00:00, 14.02it/s]
Results in Algorithm dagmm are:
accuracy_score: 0.98
precision_score: 0.99
recall_score: 0.99
f1_score: 0.99
processing time: 15.330137 seconds
roc_auc_score: 0.99
connection is closed